Biodisparity in fish communities in the Coorong, and Lakes Alexandrina and Albert Ramsar Site

Adam Watt. Department of Environment, Water and Natural Resources. August 2013.

Background

The Coorong, and Lakes Alexandrina and Albert site was listed as a 'Wetland of International Importance' under the Ramsar Convention in 1985. As a signatory to the Ramsar Convention, the Australian government is obligated to retain the 'Ecological Character' of the site. The site comprises a diverse range of habitats with differing hydrological, physical and physico-chemical attributes, thus harbouring highly diverse fish assemblages unique within the Murray-Darling Basin. This includes species of national and state conservation.

Important components of ecological character are measures of 'biodiversity' and 'biodisparity', whereby biodiversity relates to species richness and biodisparity relates to measures of uniqueness in morphology, life-history, function and/or genetics within a community (Gould 1989; DeVaney 2010). The biodisparity of a wetland community will be determined by the diversity and predictability of its habitats in time and space, i.e. the more heterogeneous and unpredictable the habitats, the greater the biodisparity of the fish fauna. Measures of both biodiversity and biodisparity should therefore be used to assess the international importance of a wetland.

There is a need for clearly articulated rationale for interpreting and applying the current Ramsar criteria within the context of the new ECD framework. Quantitative data and appropriate justification (i.e. using expert opinion, comparison with global biodiversity in similar climatic zones) to support the meeting of Ramsar criteria, including Criteria 7 and 8 for fish communities is required. The listing of a wetland under the Ramsar convention should be selected on account of their international significance in terms of ecology, botany, zoology, limnology or hydrology and indicates that in the first instance, wetlands of international importance to waterfowl at any season should be included (Ramsar Convention Article 2.2). Listing may be based upon several different criteria, some of which are specific to different biotic groups, including fish. Indeed the following criteria specifically relate to fish-based parameters in regards to Ramsar listing

 Criteria 7: 'a wetland should be considered internationally important if it supports a significant proportion of indigenous fish subspecies, species or families, lifehistory stages, species interactions and/or populations that are representative of wetland benefits and/or values and thereby contributes to global biological diversity.'

 Criteria 8: 'a wetland should be considered internationally important if it is an important source for food for fishes, spawning ground, nursery and/or migration path on which fish stocks, either within the wetland or elsewhere depend'.
(Criteria taken from Appendix 4 Department of the Environment, Water, Heritage and the Arts (2008).

The specific objectives of the current report are,

- 1. To assess whether the Coorong, and Lakes Alexandrina and Albert site meets Ramsar criteria 7 and 8 based on available literature and fish data (including a comparison of global biodiversity in similar climatic zones).
- 2. Comment on the potential to identify changes in ecological character at the site (based on available fish data).

- 3. Provide a summary of knowledge gaps.
- 4. Provide recommendations for future monitoring and research based on knowledge gaps.

Assessment of the Coorong, and Lakes Alexandrina and Albert site against Ramsar criteria 7 and 8

The Ramsar convention provides a series of points to guide determination of concordance with criteria. To determine if the Coorong, and Lakes Alexandrina and Albert site meets Criteria 7, the site should:

- Support a high diversity of fishes and shellfishes related to several factors: number of taxa, different life-history stages, species interactions, and the complexity of interactions between the taxa and the external environment
- Support significant numbers (at least 10%) of endemic species or genetically distinct intraspecific categories such as geographical races
- Support a community that demonstrates high biodisparity (i.e. large range of morphologies and reproductive styles).

To determine if the Coorong, and Lakes Alexandrina and Albert site meets Criteria 8, the Site should:

• Support nursery, breeding and/or feeding grounds for fish species

The following provides support for the listing the Coorong, and Lakes Alexandrina and Albert site under the Ramsar convention in concordance with Criteria 7 and 8 and guiding points above.

Numerous studies, investigating various aspects of fish ecology, have been undertaken in the Coorong, and Lakes Alexandrina and Albert site and this literature indicates that 90 individual fish species have been recorded from the site, representing 47 different families (Tables 1). Nonetheless, large proportions of these species (45) are of marine origin and are irregularly sampled within the site. Recent monitoring supports this, indicating that the site regularly supports 34 fish species, representing 22 families (Table 2). The total number of taxa observed and regularly recorded at the site seems low by international standards but this is misleading. In regards to freshwater fish species, Australia is often considered to have a depauperate fauna, with just 300 native species, 46 of which are native to the Murray-Darling Basin. Of these, over 30 have been recorded in the Lower Lakes, suggesting it harbours arguably the most diverse freshwater fish assemblage in the MDB. Additionally, species richness in the Murray Mouth Estuary (see Zampatti et al 2010) is typically similar to that observed in other temperate estuaries in Southern Australia (Humphries et al 1992; Potter and Hyndes 1999 and references therein) and South Africa (Whitfield 1999; Lamberth et al 2008).

The Coorong, and Lakes Alexandrina and Albert site harbours a diverse fish community, in regards to species richness, but perhaps more notably, the fish community of the region exhibits high levels of biodisparity in regards to morphology and life history strategy. Fishes of the region range in size (adult length) from 40 mm to > 1 m possess contrasting morphologies, from benthic flatfishes (i.e. Pleuronectidae) to fusiform pelagic species (e.g. Arripidae) and represent a wide range of different life history strategies. Elliott *et al* (2007) present a guild approach to classify the life history strategies of fishes based upon their use of estuaries and suggest eight disparate life history guilds globally; namely marine migrant, freshwater straggler, estuarine resident, estuarine migrant, freshwater migrant, freshwater straggler, anadromous and catadromous. These guilds differ based upon their dependence upon estuaries (i.e. dependent v independent), the environment within which spawning occurs (freshwater, estuarine or marine), the life stages that utilise estuaries

(i.e. all, juvenile, adult) and the conditions under which estuaries are utilised (e.g. high freshwater input v low freshwater input). All eight guilds suggested by Elliott *et al* (2007) are represented by species regularly sampled within the Coorong, and Lakes Alexandrina and Albert site (Table 2).

The Coorong, and Lakes Alexandrina and Albert site is also home to a number of genetically distinct populations for species within South Australia and the Murray-Darling Basin (Hammer *et al*, 2009). However, due to the fact that populations of these species are found in other areas of Australia, it is thought that this site does not meet this particular point.

The Coorong, and Lakes Alexandrina and Albert site, by virtue of the diversity of habitats present, the influence of hydrology within the MDB and interaction with river regulation, typically exhibits highly variable physical (e.g. water level, connectivity), chemical (e.g. salinity) and biological (e.g. productivity) characteristics at a range of temporal and spatial scales. Accordingly, patterns of fish assemblage structure (i.e. species composition and abundance) are highly variable (Zampatti *et al* 2010; Wedderburn *et al* 2012) and influenced by complex interactions between taxa and the external environment. Whilst interactions between taxa and the external environment are species-specific, Bice (2010a) suggests that the flow regime and resulting physico-chemical environment, and connectivity, are broadly important to fish communities of the Coorong, and Lakes Alexandrina and Albert site and affect the general functioning of the system.

This is supported by numerous studies investigating the effects of flow, connectivity, and physico-chemical conditions either separately or in combination within the Coorong, and Lakes Alexandrina and Albert site and in broader estuarine and coastal ecosystems.

- On-going lack of freshwater inflows into the Coorong/Murray Mouth had a negative impact on Greenback flounder, Mulloway, Black bream and Congolli. Noell *et al* 2009.
- On-going lack of freshwater inflows into the Coorong/Murray Mouth and therefore lack of connectivity between freshwater, estuarine and marine environments lead to failed recruitment of catadromous and anadromous species between 2002 and 2010. Zampatti et al 2010.
- On-going lack of freshwater inflows into the Coorong/Murray Mouth and subsequent increases in salinity have influence the composition of fish assemblages and limited distributions. Noell *et al* 2009.
- There has been a clear shift in fish assemblage composition in the Coorong from assemblages dominated by marine/estuarine species in 2006/07 during drought (Noell *et al.* 2009), to assemblages dominated primarily by freshwater/estuarine species during years of high flow (2010-2012) (Ye *et al.* 2012a).
- Similar to previous studies in the Coorong, a general decline in species richness and diversity with increasing distance from the Murray Mouth is likely a response to the strong salinity gradient. Certain fish taxa probably forced out of the more saline areas due to the increasing osmoregulatory stress and/or diminishing food resources (Whitfield, 1999) (Noell, et al 2009) (Ye et al 2012).
- The effects of reduced or no freshwater inflows on fish in estuarine and coastal ecosystems include: impediment to migration of diadromous species without attractant flows, particularly when there are physical barriers (e.g. barrages); lack of stimulus for spawning; indirect impact on spawning and recruitment success as a result of modified water temperature and salinity; alteration of

nursery habitat with changes in food, temperature, turbidity and salinity; reduction in primary production and trophic structure of ecosystem; and changes in fish assemblages (see Drinkwater & Frank (1994) and Gillanders & Kingsford (2002) for thorough reviews of these effects). Noell *et al* 2009.

• Freshwater flows can influence fish species that inhabit estuaries directly through changes in physico-chemical conditions (e.g. turbulence, water quality variables), or indirectly through modifying primary and secondary productivity, habitat availability and quality, thereby influencing fish growth and recruitment (and subsequent abundance) (Whitfield 2005; Robins and Ye 2007) (Ye et al 2012a).

In summary, several studies indicate that The Coorong, and Lakes Alexandrina and Albert site support a high diversity of fishes in relation to species richness, as well as high level of biodisparity in relation to species with differing morphologies and lifehistories, and there is a high level of complexity of interactions between taxa and the external environment. The information outlined above indicates that the site could meet the requirements of this particular point under Criteria 7.

Estuarine resident species are those that utilise estuaries for their entire life cycle (Elliott *et al* 2007) (There are numerous estuarine resident species commonly monitored in the Ramsar site (Ye *et al* 2012a), including but small-mouthed hardyhead, Tamar River goby, greenback flounder, and black bream, , that utilise the CLLMM site as a spawning ground, nursery and as adult habitat. Furthermore the Ramsar site represents migratory pathway, and potentially a nursery, for several diadromous fish species, including common galaxias, congolli and lamprey species, which require move between freshwater (Lakes Alexandrina) and marine environments (Coorong/Murray Mouth) in order to complete their life cycle (Bice 2010a).

The Ramsar site is also important for 'marine migrants' species, such as mulloway, which tend to utilise the Coorong estuary during the juvenile life stage. Ferguson *et al* 2008 suggest that the population of mulloway (*Argyrosomus japonicus*) located about the Murray River system are estuarine dependent and that the estuary provides important refuge for juveniles. Furthermore, Ferguson *et al* (2008) present evidence that year class strength in mulloway is positively correlated with freshwater flow to the Coorong and may influence population dynamics more broadly across Australia's southern coast. In support of this supposition, recent evidence suggests there is some level of movement of mulloway between the Coorong and the Glenelg River estuary in south-western Victoria, a movement of ~400 km (Jason Lieschke Pers comm.)

The Coorong has been highlighted as an important nursery ground and habitat for the marine migrant sandy sprat (*Hyperlophus vittatus*) (Rogers and Ward, 2007). The sandy sprat is small-bodied (<100 mm in length) schooling, pelagic clupeid, which has been shown to be a significant prey item of piscivorous fishes (Hoedt and Dimmlich 1994) and piscivorous birds, including little penguins (Klomp and Wooler 1995) and little terns (Taylor and Roe 2004). It has been suggested that this species may be important for trophic dynamics within the CLLMM Ramsar site, particularly within the Coorong estuary (Bice *et al* 2012).

In summary the Ramsar site provides a range of fish species with sources of food, spawning grounds and nurseries, and acts as a migration path on which diadromous fishes of the region depend.

1. Comment on the potential to identify changes in ecological character at the site (based on available fish data).

There is extensive fish data available for the Coorong, and Lakes Alexandrina and Albert site for small-bodied fish abundance and distribution in the Lakes, as well as Coorong fish abundance and distribution.

Available fish data for the Ramsar site includes:

- Coorong fish monitoring Assemblage structure, abundance and distribution 2009/2013.
- Small-bodied threatened fish Assemblage structure, abundance/population dynamics threatened. 2008 2013
- Fishway monitoring Assemblage structure, abundance/population dynamics threatened, spawning/recruitment, movement. 2006 2012
- Fishway assessments and monitoring movements of black bream within the Coorong Fishway effectiveness, movement. 2004/5 and 2009 2012
- Monitoring movements of adult female congollis Movement 2009-2010
- Wetland monitoring Assemblage structure, abundance/population dynamics, influence of management interventions. 2009 2011

The summary of data above suggests that there is potential to identify changes in certain aspects of the ecological character at the site (e.g. population status of threatened small-bodied fish). There are however many knowledge gaps surrounding the fish communities and interactions within the site, which may limit the ability to identify changes (e.g. population status of threatened large-bodied fish and habitat and food requirements that contribute to recruitment).

2. Provide a summary of knowledge gaps.

- The degree of movement of different species between Lake Alexandrina and the River Murray and between Lake Alexandrina and Lake Albert remains largely unknown (Bice 2010a).
- Bice 2010a outlines more knowledge gaps that can be further discussed here, also the latest monitoring reports may be able to help.
- Large bodied native fish (Murray cod, Golden perch, etc) status/distribution in Lakes Alexandrina and Albert
- Critical habitat requirements and food resources that contribute to recruitment success (within the Coorong)
- Diadromous species response to different freshwater flows (i.e. linkages between spawning/migration to flow regimes in terms of timing and duration)
- Specific habitat associations of fishes in the Lower Lakes
- Influence of the Coorong on populations of marine migrant species more broadly along the southern coastline. Does the Coorong estuary produce significant proportions of recruits to populations outside the site?

- 3. Provide recommendations for future monitoring and research based on knowledge gaps.
- Further targeted research is required to determine the mechanisms involved in fish assemblage and recruitment responses, and how they are linked to flow regimes (e.g. magnitude, timing and duration)
- Critical habitat requirements and food resources that contribute to recruitment success for key estuarine fish species
- Connectivity requirements for assemblages

References

Barnett, C. and Pankhurst, N. (1999). Reproductive biology and endocrinology of greenback flounder *Rhombosolea tapirina* (Gunther 1862). *Marine and Freshwater Research* **50**, 35-42.

Bice, C. and Ye, Q. (2006). Monitoring threatened fish communities on Hindmarsh Island, in the Lower Lakes of the River Murray, South Australia in 2005. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, SARDI Publication Number RD06/0004-1.

Bice, C. (2010)a. Literature review of the ecology of fishes of the Lower Murray, Lower Lakes and Coorong. Report to the South Australian Department for Environment and Heritage. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, 81 pp. SARDI Publication No. F2010/000031-1.

Bice, C. M., B. P. Zampatti, P. R. Jennings and P. Wilson (2012). Fish assemblage structure, movement and recruitment in the Coorong and Lower Lakes in 2011/12. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000186-3. SARDI Research Report Series No. 680. 53pp.

Cadwallader, P. L. and Backhouse, G. (Eds) (1983). A guide to freshwater fishes of victoria. (Victorian Government printing house: Melbourne)

Department of the Environment, Water, Heritage and the Arts (2008). National Framework and Guidance for Describing the Ecological Character of Australia's Ramsar Wetlands. Module 2 of the National Guidelines for Ramsar Wetlands – Implementing the Ramsar Convention in Australia. Australian Government Department of the Environment, Water, Heritage and the Arts, Canberra.

Devaney, L.A. 2010. Biodiversity and Biodisparity. Ecology and Society 15(2)

Drinkwater, K. F. and Frank, K. T. (1994). Effects of river regulation and diversion on marine fish and invertebrates. Aquatic Conversation: *Freshwater and Marine Ecosystems* **4**, 135-151.

Elliot, M., Whitfield, A. K., Potter, I. C., Blaber, S. J. M., Cyrus, D. P., Nordlie, F. G., and Harrison, T. D. (2007). The guild approach to categorizing estuarine fish assemblages: A global review. Fish and Fisheries, **8**: 241-268.

Ellis, I. (2005). Ecology and breeding seasonality of the Murray hardyhead Craterocephalus fluviatilis (McCulloch), Family Atherinidae, in two lakes near Mildura, Victoria. Murray-Darling Freshwater Research Centre, Lower Basin Laboratory, Mildura.

Ferguson, G., Ward, T., and Geddes G. (2008). Do recent age structures and historical catches of mulloway, *Argyrosomus japonicus* (Sciaenidae), reflect freshwater inflows in the remnant estuary of the Murray River, South Australia? *Aquatic Living Resources*. **21**, 145-152.

Ferguson, G, and Ward, T. (2003). Mulloway (Argyrosomus japoniscus) Fishery. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. 63pp.

Gillanders, B. M. and Kingsford, M. J. (2002). Impact of changes in flow of freshwater on estuarine and open coastal habitats and the associated organisms. Oceanography and Marine Biology: an Annual Review 2002 **40**, 233-309.

Gould, S.J., 1989. Woderful Life. Wonton and Co. NY., 346 pp.

Haddy, J. and Pankhurst, N. (1998). Annual change in reproductive condition and plasma concentrations of sex steroids in black bream, Acanthopagrus butcheri (Munroe) (Teleostei:Sparidae). Marine and Freshwater Research **49**, 389-397.

Hall, D. (1984). The Coorong: biology of the major fish species and fluctuations in catch rates 1976-1984. SAFIC **8**, 3-17

Hammer, M., Wedderburn, S., and Westergaard, S. (2002). Freshwater fishes of Wyndgate: An island refuge. Report to the Department for Environment and Heritage as part of the Biological Survey Program.

Hammer, M., Wedderburn, S and van Weenen, J. Action Plan for South Australian Freshwater Fishes. 2009

Higham J, Hammer M and Geddes MC (2002) Fish and Invertebrates. In 'The Murray Mouth: Exploring the implications of closure or restricted flow' pp. 53-64. (A report prepared for the Murray-Darling Basin Commission, Department of Water, Land and Biodiversity Conservation)

Higham, J., Ferguson, G., and Ye, Q. (2005). Lakes and Coorong yellow-eye mullet (*Aldrichetta forsteri*) fishery. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication Number RD04/0162. 49pp.

Hoedt, F. E. and W. F. Dimmlich (1994). Diet of sub-adult Australian salmon, *Arripis truttaceus* in Western Port, Victoria. Australian Journal of Marine and Freshwater Research **45**: 617-623.

Hortle, M. (1978). The ecology of the sandy, *Pseudaphritis urvillii*, in south-east Tasmania. Honours thesis, University of Tasmania.

Humphries, P., Potter, I. C., and Lonergan, N. R. (1992). The fish community in the shallows of a temperate Australian estuary: relationships with the aquatic macrophyte *Ruppia megacarpa* and environmental variables. *Estuarine, Coastal and Shelf Science* **34**, 325-346.

Jennings, P., Zampatti, B., and Bice, C. (2008). Fish movement and recruitment in the Coorong and Lower Lakes 2007/08 Progress Report. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. 47pp.

Klomp, N. I. and R. D. Wooller (1988). Diet of little penguins, *Eudyptula minor*, from Penguin Island, Western Australia. Australian Journal of Marine and Freshwater Research **39**: 633-639.

Koehn, J. D. and Harrington, D. (2006). Environmental conditions and timing for the spawning of Murray Cod (*Maccullochella peelii peelii*) and the endangered trout cod (*M.macquariensis*) in southeastern Australian rivers. *Rivers Research and Applications* **22**, 327-342

Koehn, J. D. and O'Connor W. C. (1990). Biological information for the management of native freshwater fish in Victoria. Department of Conservation and Environment, Freshwater Fish Management Branch & Arthur Rylah Institute for Environment Research, North Melbourne.

Kurth, D. (1957). An investigation of the greenback flounders, *Rhombosolea tapirina* Gunther. PhD Thesis, University of Tasmania.

Lamberth, S.J., van Niekerk, L., and Hutchings, K. (2008). Comparison of and the effects of altered freshwater inflow on fish assemblages of two contrasting South African estuaries: The cool-temperate Oliphants and the warm-temperate Breede. *African Journal of Marine Science*, **30**:311-336.

Lintermans, M (2007). Fishes of the Murray-Darling Basin: An introductory guide. (Murray-Darling Basin Commission, Canberra)

Llewellyn, L. C. (2006). Breeding and development of the endangered purplespotted gudgeon *Mogurnda* aspersa population from the Murray-Darling. Australian Zoologist **33**, 480-510.

McDowall, R. M. (Ed.) (1996). Freshwater fishes of south-eastern Australia. (Reed: Sydney).

Molsher, R. L., Geddes, M. C., and Paton, D. C. (1994). Population and reproductive ecology of small-mouthed hardyhead Atherinosoma microstoma (Gunther) (Pisces: Atherinidae) along a salinity gradient in the Coorong, South Australia. Transactions of the Royal Society of South Australia **118**, 207-216

McNeil, D., and Hammer, M. (2007). Biological review of the freshwater fishes of the Mount Lofty Ranges. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. 104pp. Publication number: F2006/000335.

Neira, F and Potter I. (1994). The larval fish assemblage of the Nornalup-Walpole estuary, a permanently open estuary on the south coast of Western Australia. *Australian Journal of Marine and Freshwater Research* **45**, 1193-1207.

Newton, G. M. (1996). Estuarine icthyoplankton ecology in relation to hydrology and zooplankton dynamics in a salt-wedge estuary. *Marine and Freshwater Research* **47**, 99-111.

Noell, C. J., Ye, Q., Short, D. A., Bucater, L. B. & Wellman, N. R. (2009). Fish assemblages of the Murray Mouth and Coorong region, South Australia, during an extended drought period. CSIRO: Water for a Heathly Country National Research Flagship and South Australian Research and Development Institute (Aquatic Sciences), Adelaide.

Norriss, J., Tregonning, J., Lenanton, R., and Saree, G. (2002). Biological synopsis of the black bream, Acanthopagrus butcheri (Munroe) (Teleostei: Sparidae) in Western Australia with reference to information from other southern states: Fisheries Research Report. Department of Fisheries, Western Australia, Perth.

Nunn, A., Harvey, J., and Cowx, I. (2007). Variations in the spawning periodicity of eight fish species in three English lowland rivers over a 6 year period, inferred from 0+ year fish length distributions. *Journal of Fish Biology* **70**, 1254-1267.

Potter, I.C., and Hyndes, G.A. (1999). Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holartic estuaries and estuaries elsewhere in temperate Australia: A review. *Australian Journal of Ecology* **24**: 395-421.

Puckridge, J., and Walker, K. F. (1990). Reproductive biology and larval development of a gizzard shad, Nematalosa erebi (Gunther) (Dorosomatinae: Teleostei), in the River Murray, South Australia. *Australian Journal of Marine and Freshwater Research* **41**, 695-712.

Robins, J. and Ye, Q. (2007). Relationships between freshwater flow and fisheries (or secondary) production in Australian estuaries: a review. Literature Review for e-Water CRC.

Rogers, P and Ward T. (2007). Life history strategy of sandy sprat Hyperlophus vittatus (Clupeidae): a comparison with clueoids of the Indo-Pacific and southern Australia. *Journal of Applied Ichthyology* **23**, 583-591.

Sarre, G., and Potter, I. (1999). Comparisons between the reproductive biology of black bream Acanthopagrus butcheri (Teleostrii:Sparidae) in four estuaries with widely differing characteristics. *International Journal of Salt Lake Research* **8**, 179-210.

Taylor, I. R. and E. L. Roe (2004). Feeding ecology of little terns *Sterna albifrons sinensis* in south-eastern Australia and the effects of pilchard mass mortality on breeding success and population size. Marine and Freshwater Research **55**: 799-808.

Wedderburn, S. D., M. P. Hammer and C. M. Bice, 2012. Shifts in small-bodied fish assemblages resulting from drought-induced water level recession in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia **691**: 35-46

Whitfield, A.K. (1999). Ichthyofaunal assemblages in estuaries: A South African case study. *Reviews in Fish Biology and Fisheries* **9**, 151-186.

Whitfield, K. A. (2005). Fishes and freshwater in southern African estuaries – a review. Aquatic Living Resources 18, 275-289.

Whitfield, A. K., Taylor, R. H., Fox, C., and Cyrus, D. P. (2006). Fishes and salinities in the St Lucia estuarine system – a review. *Reviews in Fish Biology and Fisheries* **16**, 1-20.

Ye, Q., Jones, K., and Pierce, B. (2000). Murray cod (Maccullochella peelii peelii), Fishery Assessment Report to PIRSA for Inland Waters Fishery Management Committee. South Australian Fisheries Assessment Series 2000/17.

Ye, Q., Bucater, L., Short, D. and Livore, J. (2012a). Fish response to barrage releases in 2011/12, and recovery following the recent drought in the Coorong, South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2012/000357-1. SARDI Research Report Series No. 665. 81pp.

Zampatti BP, Bice CM, and Jennings PR (2010). Temporal variability in fish assemblage structure and recruitment in a freshwater-deprived estuary: The Coorong, Australia. *Marine and Freshwater Research*, **61**, 1298-1312.

Zampatti BP, Bice CM, and Jennings PR (2011). Fish assemblage structure, movement and recruitment in the Coorong and Lower Lakes from 2006-2010. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000186-1. SARDI Research Report Series No. 569. 43pp.

Zampatti, B.P., Bice, C.M. and Jennings, P.R (2012). Fish assemblage response and fishway effectiveness at Goolwa, Tauwitchere and Hunters Creek Barrages in 2010/11. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000186-2. SARDI Research Report Series No. 605. 66pp.

Appendix 1. Table 1. Fish species found in Lower Lakes and Coorong

	Common Name	Scientific Name	Family	Functional Group	Reference:
1	Australian smelt	Retropinna semoni	Retropinnidae	Freshwater migrant	Zampatti, et al 2011
2	Flat-headed gudgeon	Philypnodon grandiceps	Eleotridae	Freshwater migrant	Zampatti, et al 2011
3	Bony herring (bream)	Nematalosa erebi	Clupeidae	Freshwater straggler	Zampatti, et al 2011
4	Dwarf flat-headed gudgeon	Philypnodon macrostomus	Eleotridae	Freshwater straggler	Zampatti, et al 2011
5	Common carp	Cyprinus carpio	Cyprinidae	Freshwater straggler	Zampatti, et al 2011
6	Redfin perch	Perca fluviatilis	Percidae	Freshwater straggler	Zampatti, et al 2011
7	Eastern Gambusia	Gambusia holbrooki	Poecilidae	Freshwater straggler	Zampatti, et al 2011
8	Carp gudgeon complex	Hypseleotris spp.	Eleotridae	Freshwater straggler	Higham, et al 2002
9	Silver perch	Bidyanus Bidyanus	Terapontidae	Freshwater straggler	Higham, et al 2002
10	Goldfish	Carassius auratus	Cyprinidae	Freshwater straggler	Higham, et al 2002
11	Murray hardyhead	Craterocephalus fluviatilis	Atherinidae	Freshwater straggler	Higham, et al 2002
12	Unspecked hardyhead	Craterocephalus stercusmuscarum fulvus	Atherinidae	Freshwater straggler	Higham, et al 2002
13	River blackfish	Gadopsis marmoratus	Gadopsidae	Freshwater straggler	Higham, et al 2002
14	Mountain galaxias	Galaxias olidus	Galaxiidae	Freshwater straggler	Higham, et al 2002
15	Spangled perch	Leiopatherapon unicolour	Terapontidae	Freshwater straggler	Higham, et al 2002
16	Murray cod	Maccullochella peeli	Percichthyidae	Freshwater straggler	Higham, et al 2002
17	Golden perch	Macquaria ambigua	Percichthyidae	Freshwater straggler	Higham, et al 2002
18	Murray-Darling rainbowfish	Melanotaenia fluviatilis	Melanotaeniidae	Freshwater straggler	Higham, et al 2002
19	Southern purple spotted gudgeon	Mogurnda adspersa	Eleotridae	Freshwater straggler	Higham, et al 2002
20	Southern pygmy perch	Nannoperca australis	Nannopercidae	Freshwater straggler	Higham, et al 2002
21	Yarra pygmy perch	Nannoperca obscura	Nannopercidae	Freshwater straggler	Hammer et al 2002.
23	Rainbow trout	Oncorhynchus mykiss	Salmonidae	Freshwater straggler	Higham, et al 2002
24	Brown trout	Salmo trutta	Salmonidae	Freshwater straggler	Higham, et al 2002
25	Freshwater (eel-tailed) catfish	Tandanus tandanus	Plotosidae	Freshwater straggler	Higham, et al 2002
26	Tench	Tinca tinca	Cyprinidae	Freshwater straggler	Higham, et al 2002
27	Common galaxias	Galaxias maculatus	Galaxiidae	Anadromous	Higham, et al 2002

28	Congolli	Pseudaphritis urvillii	Bovichtidae	Catadromous/Estuarine Resident	Zampatti, et al 2011
29	Short-finned eel	Anguilla australis	Anguillidae	Catadromous	Higham, et al 2002
30	Estuary Perch	Macquaria colonorum	Percichthyidae	Catadromous	Higham, et al 2002
31	Climbing galaxias	Galaxias brevipinnis	Galaxiidae	Anadromous	Higham, et al 2002
32	Short-headed lamprey	Mordacia mordax	Mordaciidae	Anadromous	Zampatti, <i>et al</i> 2011
33	Pouched lamprey	Geotria australis	Geotriidae	Anadromous	Zampatti, et al 2011
34	River garfish				· · ·
35		Hyporhamphus regularis	Hemiramphidae	Estuarine migrant/resident	Higham, et al 2002
	Small-mouthed hardyhead	Atherinosoma micostoma	Atherinidae	Estuarine resident	Higham, et al 2002
36	Tamar River goby	Afurcagobius tamarensis	Gobiidae	Estuarine resident	Higham, et al 2002
37	Blue-spot goby	Pseudogobius olorum	Gobiidae	Estuarine resident	Higham, et al 2002
38	Lagoon goby	Tasmanogobius lasti	Gobiidae	Estuarine resident	Higham, et al 2002
39	Bridled goby	Arenogobius bifrenatus	Gobiidae	Estuarine resident	Higham, et al 2002
40	Greenback flounder	Rhombosolea tapirina	Pleuronectidae	Estuarine resident	Higham, et al 2002
41	Long-snouted flounder	Ammotretis rostratus	Pleuronectidae	Estuarine resident	Higham, et al 2002
42	Estuary catfish/cobbler	Cnidoglanis	Plotosidae	Estuarine resident	Higham, et al 2002
		macrocephalus			_
43	Black bream	Acanthopagrus butcheri	Sparidae	Estuarine resident	Higham, et al 2002
44	Yellow-eyed mullet	Aldrichetta forsteri	Mugilidae	Estuarine migrant/resident	Higham, et al 2002
45	Flat-tailed mullet/Jumping mullet/etc	Liza argentea	Mugilidae	Estuarine migrant	Zampatti, et al 2011
46	Sea mullet	Mugil cephalus	Mugilidae	Marine migrant	Higham, et al 2002
47	Mulloway	Argyrosomus japonicus	Sciaenidae	Marine migrant	Zampatti, et al 2011
48	Soldier fish	Gymnapistes marmoratus	Tetrarogidae	Marine migrant	Zampatti, et al 2011
49	Smooth toadfish	Tetractenos glaber	Tetraodontidae	Marine migrant	Zampatti, et al 2011
50	Prickly toadfish	Contusus brevicaudus	Tetraodontidae	Marine migrant	Zampatti, et al 2011
51	King George whiting	Sillaginodes punctatus	Sillaginidae	Marine migrant	Zampatti, et al 2011
52	Yellowfin whiting	Sillago schomburgkii	Sillaginidae	Marine migrant	Zampatti, et al 2011
53	Australian herring	Arripis georgianus	Arripidae	Marine migrant	Zampatti, et al 2011
54	Australian salmon	Arripis truttacea	Arripidae	Marine migrant	Zampatti, et al 2011
55	Sandy sprat	Hyperlophus vittatus	Clupeidae	Marine migrant	Zampatti, et al 2011
56	Southern garfish	Hyporhamphus melanchir	Hemiramphidae	Marine migrant	Zampatti, et al 2011

57	Gummy shark	Mustelus antarcticus	Triakidae	Marine migrant	Zampatti, et al 2011
58	Southern eagle ray	Myliobatis australis	Myliobatidae	Marine migrant	Zampatti, et al 2011
59	Blue sprat	Spratelloides robustus	Clupeidae	Marine straggler	Zampatti, et al 2011
60	Australian anchovy	Engraulis australis	Engraulidae	Marine straggler	Zampatti, et al 2011
61	Australian pilchard	Sardinops sagax	Clupeidae	Marine straggler	Zampatti, et al 2011
62	Pugnose pipefish	Pugnaso curtirostris	Syngnathidae	Marine straggler	Zampatti, et al 2011
63	Tuckers pipefish	Mitotichthys tuckeri	Syngnathidae	Marine straggler	Zampatti, et al 2011
64	Big belly seahorse	Hippocampus abdominalis	Syngnathidae	Marine straggler	Zampatti, et al 2011
65	Zebra fish	Girella zebra	Kyphosidae	Marine straggler	Zampatti, et al 2011
66	Tasmanian blenny	Parablennius tasmanianus	Blenniidae	Marine straggler	Zampatti, et al 2011
67	Silver spot (kelpfish)	Threpterius maculosus	Chironemidae	Marine straggler	Zampatti, et al 2011
68	Bridled leatherjacket	Acanthaluteres	Monacanthidae	Marine straggler	Zampatti, et al 2011
		spilomelanurus			
69	Sea sweep	Scorpis aequipinnis	Kyphosidae	Marine straggler	Zampatti, et al 2011
70	Blue grouper	Achoerodus gouldii	Labridae	Marine straggler	Higham, et al 2002
71	Ornate cowfish	Aracana ornate	Aracanidae	Marine straggler	Higham, et al 2002
72	Red gurnard	Chelidonichthys kumu	Triglidae	Marine straggler	Higham, et al 2002
73	Sand fish	Lesueurina platycephala	Leptoscopidae	Marine straggler	Higham, et al 2002
74	Southern crested weedfish	Cristiceps australis	Clinidae	Marine straggler	Higham, et al 2002
75	Old wife	Enoplosus armatus	Enoplosidae	Marine straggler	Higham, et al 2002
76	Gunn's leatherjacket	Eubalichthys gunnii	Monacanthidae	Marine straggler	Higham, et al 2002
78	Red Gurnard Perch	Heliocolenus percoides	Sebastidae	Marine straggler	Higham, et al 2002
79	Striped perch	Helotes sexilineatus	Terapontidae	Marine straggler	Higham, et al 2002
80	Longnose weedfish	Heteroclinus tristis	Clinidae	Marine straggler	Higham, et al 2002
81	Six-spined leatherjacket	Meuschenia freycineti	Monacanthidae	Marine straggler	Higham, et al 2002
82	Goblin shark	Mitsukurina owstoni	Mitsukurinidae	Marine straggler	Higham, et al 2002
83	Black spotted gurnard perch	Neosebastes	Neosebastidae	Marine straggler	Higham, et al 2002
		nigropunctatus			
84	Common gurnard perch	Neosebastes	Neosebastidae	Marine straggler	Higham, et al 2002
		scorpaenoides			
85	Snapper	Pagrus auratus	Sparidae	Marine straggler	Higham, et al 2002

86	Velvet leatherjacket	Parika scaber	Monacanthidae	Marine straggler	Higham, <i>et al</i> 2002
87	Common seadragon	Phyllopteryx taeniolatus	Syngnathidae	Marine straggler	Higham, et al 2002
88	Southern saw shark	Pristiophorus nudipinnis	Pristiophoriformes	Marine straggler	Higham, et al 2002
89	Trevally	Pseudocaranx dentex	Carangidae	Marine straggler	Higham, et al 2002
90	Rough leatherjacket	Scobinichthys granulatus	Monacanthidae	Marine straggler	Higham, et al 2002
92	Richardson's toadfish	Tetractenos hamlitoni	Tetraodontidae	Marine straggler	Higham, et al 2002
93	Southern longfin goby	Favonigobius lateralis	Gobiidae	Marine straggler	Ye, et al 2011

	Common Name	Scientific Name	Spawning mode	Egg type	Literature source	
	Large-bodied native freshwater species					
9	Silver perch	Bidyanus Bidyanus	2	Р	5,11,26	
17	Golden perch	Macquaria ambigua	2	Р	5,11,26	
16	Murray cod	Maccullochella peeli	1	Ν	5,11,16,24,26	
3	Bony herring	Nematalosa erebi	3b	Р	6,26	
25	Freshwater (eel-tailed) catfish	Tandanus Tandanus	1	Ν	5,11,26	
	Common small-bodied native freshwate	r species				
8	Carp gudgeon complex	Hypseleotris spp.	3a	Ν	5,11,26	
2	Flat-headed gudgeon	Philypnodon grandiceps	3a	Ν	5,11,26	
4	Dwarf flat-headed gudgeon	Philypnodon macrostomus	3a?	Ν	5,11,26	
1	Australian smelt	Retropinna semoni	3a	R	5,11,26	
18	Crimson spotted (Murray) rainbowfish	Melanotaenia fluviatilis	3b	A	5,11,26	
12	Fly specked (Unspecked) hardyhead	Craterocephalus stercusmuscarum fulvus	3a?	A	5,11,26	
	Rare or endangered small-bodied freshv	vater species				
11	Murray hardyhead	Craterocephalus fluviatilis	3a	A	5,11,20,23,26	
19	Southern purple-spotted gudgeon	Mogurnda adspersa	3a	Ν	5,11,25,26	
20	Southern pygmy perch	Nannoperca australis	3b	А	5,11,26	
21	Yarra pygmy perch	Nannoperca obscura	3b	А	26,27	
	Alien freshwater species					
10	Goldfish	Carassius auratus	3a	А	26	
5	Common carp	Cyprinus carpio	3a	Α	18,26	
7	Eastern Gambusia	Gambusia holbrooki	Live bearer	L	26	
6	Redfish perch	Perca fluviatilis	3a	А	26,28	
	Diadromous species (anadromous and a	catadromous)				
33	Pouched lamprey	Geotria australis	3b?	R	5,11,26	
32	Short-headed lamprey	Mordacia mordax	3ps	R	5,11,26	
27	Common galaxias	Galaxias maculatus	3b	A	5,11,26	
29	Short-finned eel	Anguilla australis	Ş	РŞ	5,11,26	
30	Estuary perch	Macquaria colonorum	2?	Р	5,11,26	
28	Congolli	Pseudaphritis urvillii	3ps	R?	2,26,29	

Table 2. Spawning information on fish found in CLLMM site

	Estuarine species						
44	Yellow-eyed mullet	Aldrichetta forsteri	3b	Р	21		
43	Black bream	Acanthopagrus butcheri	3a	Р	4,12,13,15,17		
39	Bridled goby	Arenogobius bifrenatus	3a	N	3,11,12		
36	Tamar goby	Afurcagobius tamarensis	3a	NŚ	12,26		
37	Bluespot goby	Pseudogobius olorum	3a	N	9,26		
38	Lagoon goby	Tasmanogobius lasti	3a	NŚ	26		
40	Greenback flounder	Rhombosolea tapirina	3a	Р	1,14		
35	Small-mouthed hardyhead	Atherinosoma micostoma	3a	Α	8		
	Marine species						
47	Mulloway	Argyrosomus japonicus	Ş	ЬŚ	18		

Egg Type: N – eggs guarded or laid in nest, A – adhesive eggs attached to structure/vegetation with no parental care, R – demersal eggs distributed randomly, P – surface drifting pelagic eggs, L – bear live young, ? – signifies uncertainty in classification Spawning mode as described by Humphries *et al* (1999)

Literature sources are coded as follows: 1-(Kurth 1957), 2-(Hortle 1978), 3-(Cadwallader and Backhouse 1983), 4-(Hall 1984), 5-(Koehn and O'Connor 1990), 6-(Puckridge and Walker 1990), 8-(Molsher *et al.* 1994), 9-(Neira and Potter 1994), 11-(McDowall 1996), 12-(Newton 1996), 13-(Haddy and Pankhurst 1998), 14-(Barnett and Pankhurst 1999), 15-(Sarre and Potter 1999), 16-(Ye *et al.* 2000), 17-(Norriss *et al.* 2002), 18-(Ferguson and Ward 2003), 20-(Ellis 2005), 21-(Higham *et al.* 2005), 23-(Bice and Ye 2006), 24-(Koehn and Harrington 2006), 25-(Llewellyn 2006), 26-(Lintermans 2007), 27-(McNeil and Hammer 2007), 28-(Nunn *et al.* 2007), 29-(Jennings *et al.* 2008)